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Analyzing fragmentation of simple fluids with percolation theory
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Abstract. We show that the size distributions of fragments created by high energy nuclear collisions are
remarkably well reproduced within the framework of a parameter free percolation model. We discuss two
possible scenarios to explain this agreement and suggest that percolation could be an universal mechanism
to explain the fragmentation of simple fluids. Experiments with atomic clusters would help to confirm this
hypothesis.

PACS. 36.40.Ei Phase transitions in clusters – 36.40.Qv Stability and fragmentation of clusters –
25.70.Mn Projectile and target fragmentation

1 Introduction

Fragmentation phenomena concern a wide diversity of ob-
jects in nature, at many scales of distance and time. A
natural question is to ask what is generic and what is spe-
cific in these phenomena. Most theoretical efforts made
to understand fragmentation apply only to specific ob-
jects or, on the contrary, concern simple models with few
links with reality [1]. Moreover, experimental data [2–5]
are rather sparse and often the experimental conditions
are ill defined. As a consequence, the question of the pos-
sible existence of universal fragmentation mechanisms re-
mains an open problem [6].

The arguments in favour of the existence of universal
mechanisms are of various orders. For instance, in aggrega-
tion phenomena, which can be considered as the opposite
of fragmentation, it is possible to define universal classes
[7,8] (diffusion limited aggregation, clustering of clus-
ters...) in terms of the initial conditions (number of seeds)
and the motion of the aggregating particles (ballistic,
Brownian). The fractal structure (dimension) of the aggre-
gation cluster is the fingerprint of these universal classes.
In many fragmentation processes the experimental obser-
vation, over many orders of magnitude, of power law (scale
invariant) fragment size distributions is another possible
indication of universal classes. In this case, the value of
the power law exponent would be the corresponding fin-
gerprint [2,6].

Collision induced fragmentation of small fluid drops
(atomic nuclei [9], atomic aggregates [10,11], liquid
droplets [12]) is a field of experimental research partic-
ularly active because it offers the best possibilities of

a e-mail: campi@ipno.in2p3.fr
b UMR 8626, CNRS Université de Paris XI

complete identification of the fragmentation products. We
present in this paper an analysis of the fragmentation of
atomic nuclei in high energy collisions. We show that ran-
dom percolation theory accounts for experimental data
without any adjustable parameter and we discuss two pos-
sible explanations for this agreement, depending if one as-
sumes or not that thermal equilibrium is reached before
fragmentation occurs. It is then suggested that this per-
colation type fragmentation mechanism could be universal
for simple fluids, i.e. fluids made of structureless particles
interacting with short range potentials.

The main aim of this paper is to draw the attention of
the atomic cluster community to the possible universality
of fragmentation processes. In this respect, the availability
of fragmentation data from atomic clusters made of noble
atoms would help to test the validity of this hypothesis.

The structure of the paper is the following. In
Section 2, a brief description of a fragmentation exper-
iment with atomic nuclei precedes the analysis of data.
Section 3 is devoted to the interpretation of the results.
Some final remarks and conclusions are in Section 4.

2 Analysis of fragmentation data

A proper identification of this percolation type fragmen-
tation mechanism demands a detailed examination of the
data. In particular (see below), one needs an identifica-
tion of the fragments event by event. To our knowledge, no
such data is available for the fragmentation of atomic clus-
ters1. In order to illustrate with real data these processes

1 With the exception of the data on the fragmentation of
hydrogen clusters of Farizon et al. [11]. See the comment in
Section 3.
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Fig. 1. Experimental fragment size dis-
tributions n(z) at four values of the con-
trol parameter Zbound (see text). The
lines correspond to the percolation cal-
culation. A log-log representation has
been chosen to emphasize the power law
behaviour at Zbound = 48.

(the identification of this mechanism), we discuss the
analysis of a fragmentation experiments performed with
atomic nuclei.

2.1 The experiment

The experiment was performed by the Aladin collab-
oration at Gesellschaft für Schwerionenschung (G.S.I.),
Darmstadt [13]. Beams of gold ions (Au, Z = 79) at
600 and 1000 MeV/nucleon incident energies were used
to bombard targets made of thin copper foils. Data for
more than 3×105 events were collected. At these high en-
ergies2, the commonly admitted scenario of the collision is
the following: the part of the projectile that does not ge-
ometrically overlap with the target at the point of closest
approach is thought to decouple from the rest and form
a sub-system called the projectile spectator (PS). The size
of this system and its excitation energy E∗ are therefore
dependent on the impact parameter. The overlapping part
of the system is completely vaporized and therefore does
not contribute to the formation of fragments with nuclear
charge (z) greater than one.

In the present experiment, the Aladin device detected
with very high efficiency all spectator fragments (those re-
sulting from the decay of the unstable PS) with nuclear
charge z > 1. Neither hydrogen isotopes nor neutrons were
detected, event by event, with any significant efficiency.
The initial size of the spectator system (ZPS) is not ex-
perimentally measured and can only be inferred from the

2 High energies compared with the 8 MeV/nucleon binding
energies or the 35 MeV/nucleon Fermi energies of nuclei.

comparison with a nuclear reaction model. Empirically,
this size can be estimated, on average, from the following
relation [14]:

〈ZPS〉 = 25 + Zbound − 0.004Z2
bound (1)

where Zbound is equal to the sum of all the charges of prod-
ucts with z ≥ 2. In all the studies of these experiments,
the parameter Zbound is used as control parameter. Notice
that Zbound, which is closely related to the impact param-
eter, decreases when the violence of the collision increases.

2.2 Analysis of data

To analyze the Aladin data, the following very simple
procedure has been used. For a given value of Zbound,
the size of the PS was deduced from equation (1) and
percolation calculations on a lattice of corresponding size
were performed by varying the bond breaking parameter
(random-bond percolation). Only those events with the
proper Zbound were kept and the fragment size distribu-
tion of these compared to the corresponding experimental
data. In this manner the comparison is parameter free. No-
tice that by fixing a value of Zbound, the maximum value
zmax of z is also constrained by this value.

Figure 1 shows, for Zbound values of 20, 48, 60 and
70, the experimental fragment size distributions. One ob-
serves three different regimes of fragmentation. For large
Zbound, large impact parameter and low excitation energy,
only a heavy residue and light particles are produced. This
is the “evaporation” regime. For small Zbound (most vi-
olent collisions) only small fragments are produced and
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Fig. 2. Test of the scaling assumption (Eq. (2)), that requires
that all the ratios n(z)/nc(z) follow the same curve.

no heavy residue is left. The distribution of this “vapor-
ization” regime decreases exponentially. Remarkably, at
Zbound around 48 an intermediate regime exists, for which
the distribution can be fitted by a power law n(z) ∼ z−2.2.
The mean excitation energies per particle can be estimated
for the fragmenting systems as a function of Zbound [14]:
they correspond to about 〈E∗〉 ' 14, 6, 3, 1 MeV per par-
ticle for Zbound = 20, 48, 60, 70 respectively.

The full lines in Figure 1 represent the corresponding
distributions obtained from the percolation calculation.
The calculation reproduces quantitatively, and over sev-
eral orders of magnitude, the data in the three regimes3.
We are naturally led to associate the experimental power
law behaviour at Zbound ' 48 to the percolation critical
behaviour.

Close to the critical regime, percolation theory predicts
typical scaling properties of the cluster size distributions
[15]. The size distributions can be reduced to an universal
function, f(z/z̄), by the following formula:

n(z) = nc(z)f(
z

z̄
) (2)

where nc(z) is the size distribution at the critical point,
taken here as the size distribution observed for Zbound =
48. The “characteristic size” z̄ is defined by:

z̄ = mz/m2 (3)

with mk =
∑
z≥2 zkn′(z), where n′(z) is the mean frag-

ment size distribution obtained excluding by event, the
largest fragment. One observes in Figure 2 that, within
the scattering of the data, this rule is rather well satisfied,
keeping in mind that this corresponds to the ratio of two
quantities varying over more than three orders of magni-
tude. Similar study has been performed on Au + C data
at 1 AGeV [16].

The size of the largest fragment plays in percolation
theory the role of the order parameter. For an infinite

3 A close inspection of the data for Zbound = 70 shows an ex-
cess of fragments produced around z = 30 due to the presence
of fission events. This is understandably beyond the scope of
percolation theory.

system, it is of infinite size in the percolating phase and
finite in the non-percolating one. In a finite system, this
transition is smooth, as illustrated in Figure 3. This figure
on the left compares, again as a function of Zbound, the
experimental measured size of the heaviest fragment zmax

to the one obtained from the percolation calculations. The
figure on the right shows the fluctuations of zmax,

σ2
zmax =

〈z2
max〉 − 〈zmax〉2
〈zmax〉

· (4)

As expected [17], these functions show a maximum around
the “critical” value of Zbound. In Figure 4, the full distri-
butions of P (zmax) are shown and compared to the calcu-
lation. As recommended by the Aladin collaboration, data
for Zbound > 70 have not been considered for this anal-
ysis as they are contaminated by experimental triggering
problems [18].

By any standard, the agreement observed in Figures 1
to 4, between the experiment and the calculations is very
good. In the analysis presented here, as already stressed,
no adjustable parameters are used.

3 Interpretation of the results

The choice of percolation theory to analyze the experi-
mental results is motivated by the following reasoning. A
fully microscopic description of nuclear fragmentation is,
a priori, out of scope of theory. Atomic nuclei behave in
their ground state as small drops of Fermi liquids com-
posed by particles strongly interacting mainly with a two-
body, short range force. This interaction is ill defined at
short distances and the techniques used to solve this com-
plicated many body problem are not fully under control.
The description of collisions, using transport equations for
example, is even more difficult. In view of the above re-
marks and with the stated goal of understanding the uni-
versal features of the data, we believe that a more fruitful
point of view is to tackle the problem with the minimum
number of assumptions.

The simplest hypothesis would be to assume the
equiprobability of all partitions of the integer number
Z = 79. This is equivalent to a “maximum entropy prin-
ciple” [19,20]. However, the resulting n(z) are always ex-
ponentially decaying functions, in contradiction with ex-
periments.

A step further is to consider topological constraints,
by considering fragments in a 3-dimensional space. Among
the infinity of models one can imagine to make fragments,
random-bond percolation seems a good candidate because
despite its simplicity it retains the essential constraints.
For example, the shape of the fragments is not assumed
a priori. It turns out that, as shown in Section 2, it suffices
to reproduce very well the experimental data. How does
one understand this agreement? One can imagine at least
two scenarios.

In the first scenario, one idealizes the nuclear fluid as
an ensemble of particles connected by bonds. The bond be-
tween a pair of particles is active as long as the magnitude
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Fig. 3. Mean value of zmax as func-
tion of Zbound for percolation calcula-
tion and experimental data from refer-
ence [13] (left). Fluctuations of zmax as
function of Zbound for percolation cal-
culation and experimental data from
reference [13] (right).
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Fig. 4. The distribution P (zmax) of
the largest fragment at four values of
Zbound. The circles correspond to the
data from reference [13] and the lines to
the percolation calculation.

of their potential energy is greater than the relative kinetic
energy. During the collision some of these bonds break be-
cause of the change in the position and/or the velocity of
the particles. The simplest assumption is that bonds are
broken randomly, which corresponds to the usual uncor-
related bond percolation model [15]. Particles connected
by unbroken bonds form the fragments. These fragments
separate rapidly, pushed away by the long range Coulomb
force between protons.

In a second scenario, one assumes that after the colli-
sion phase, equilibrium thermodynamics applies: the sys-
tem expands until a “freezout” density is reached, at which
the fragments cease to interact by the strong nuclear
attractive force and their size distribution is “frozen”.

Then, the Coulomb force accelerates the fragments, as
before. In order to calculate its distribution, we have to
define first what a “fragment” is. In the present context,
it seems natural to call “fragment” a self-bound ensem-
ble of particles [21,22]4. With these definitions, one finds
in the ρ− T diagram a percolation line (sometimes called
the Kertész line [26]) that separates a percolating and a
non-percolating phases. The line joins the thermodynam-
ical critical point to the random bond percolation critical

4 Another possibility is to impose the stability by monomer
evaporation only [23]. At the present level of accuracy, both
definitions are operationally very similar. Definition [23] is
equivalent to the ones proposed by Hill [24] and by Coniglio
and Klein [25].
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point. On it the fragment size distribution is a power law
n(z) ∼ z−τ , with τ ' 2.2 (see Figs. 1 and 2 of Ref. [23]). In
a small system like an atomic nucleus, rather than a sharp
critical line, one finds a “critical zone” on which the n(z)
approaches this behaviour (see Fig. 4 of Ref. [27]). The
agreement of these calculated n(z) with the experimental
ones shown in Figure 1 is also very good. Therefore, by
inspection of the n(z) alone, it is not possible to disen-
tangle between these two scenarios. However, one could
hope that extra information on, for example the fragment
kinetic energies, could indicate if thermalization is present
or not.

More generally, the main difficulty in analyzing nuclear
fragmentation data is due to the very small size of the
system, which fundamentally limits the extraction of the
universal critical exponents. Indeed, a proper characteriza-
tion of the physical process requires, apart from the τ ex-
ponent, the determination of the other critical exponents
[15] associated with the moments mk of the fragment size
distribution. Such measurements are, in principle, possible
for simple fluid systems (i.e. made of structureless parti-
cles subject to short range forces) of larger sizes such as
atomic aggregates or macroscopic pieces of matter, such
as liquid drops [12].

We consider as very plausible the possibility to ob-
serve this percolation type fragmentation in simple fluids.
Indeed, the arguments that we have developed to explain
the success of percolation theory should apply without
restriction to any system of structureless particles inter-
acting with a short range potential. In fact, attempts have
been made to show experimentally this behaviour in the
fragmentation of hydrogen aggregates [11]. In these exper-
iments, the multiplicity of fragments m0 is used as control
parameter. As a function of m0 the mass of the largest
fragment and its fluctuation, evolve qualitatively as ex-
pected in percolation theory. However, in reference [11],
the data are compared with a percolation system of im-
proper size and no definite conclusions can be drawn.

Other experiments on the fragmentation of noble met-
als have been performed, for example the fragmentation
of gold aggregates by high energy collisions with xenon
ions [28] or the production of copper and silver clusters in
sputtering sources [29]. In both cases one observes frag-
ment size distributions of power law type (with odd-even
and shell effects superposed on it) with a decay exponent
compatible with the prediction of percolation theory. Un-
fortunately this is not conclusive because no selection was
made on the different classes of fragmentation events.

On the theoretical side, we are performing large scale
classical molecular dynamics simulations of a Lennard-
Jones fluid, for both the sudden disassembly of an equili-
brated system and for the collisions of drops. We clearly
find in these calculations the fragment size distributions
predicted by percolation theory [30].

In fact, a close examination of earlier calculations of
the fragmentation of equilibrated Lennard-Jones droplets
shows qualitatively this percolation type behavior. For ex-
ample, Pandharipande and collaborators considered the
fragmentation of equilibrated droplets [31,32] made of a

few tens to a few hundreds of particles. The parameters
of the potential are adjusted to describe the interaction
between argon atoms. One clearly sees in Figures 10-
15 of reference [32] an evolution of the n(s) of percola-
tion type. The same behaviours are found in references
[21,22,33]. Pandharipande et al. also considered the frag-
mentation of colliding droplets [32] and showed (by look-
ing at the velocity distributions of the fragments and at
their size distributions) that it is possible to describe this
process as the fragmentation of a single equilibrated sys-
tem of the same total mass and of excitation energy corre-
sponding to the center of mass collision energy. The best
equilibrated systems are obtained with the collision of two
nearly equal mass droplets. It is also important to notice
that the above mentioned fragment size distributions are
the asymptotic ones, i.e. calculated once the fragments
have evacuated their internal excitation energy by par-
ticle evaporation. These asymptotic fragments are cold,
otherwise they would not be stable by particle evapora-
tion.

These remarks are interesting, in view of the possible
experimental observation of the percolation line in colli-
sions between atomic clusters of noble atoms. For these
clusters, at the high excitation energies considered here,
the classical molecular dynamics with a Lennard-Jones po-
tential is a reliable guide to define the optimal experimen-
tal conditions.

Some other calculations of the fragmentation of
Lennard-Jones droplets seem to contradict our claim on
the existence of a percolation line in the supercritical
phase. The reasons of this apparent discrepancy are of
various orders. (a) The calculations do not explore the
correct points of the phase diagram, i.e. close enough to
the Kertész line [34–36]. (b) The initial conditions are ex-
tremely out of equilibrium [37] and do not correspond to a
realistic physical situation (see the above remark concern-
ing the collision of argon droplets). (c) Clusters are sim-
ply defined as ensembles of particles close enough in space
[36,37], without any energetic consideration. Serious er-
rors are then introduced if the analysis of the cluster dis-
tribution is made at a too earlier stage during the expan-
sion of the system. (d) Artificial boundary conditions are
introduced, evolving with the expansion of the system and
allowing for a partial re-equilibration [35,36].

4 Final remarks

Other experiments of nuclear fragmentation at high bom-
barding energies have been successfully interpreted with
percolation theory [38–41]. However, at lower bombard-
ing energies (30–50 MeV/nucleon) the agreement is less
satisfactory [42,43]. The shape of the n(z) evolves quali-
tatively as in Figure 1, but a closer examination shows a
systematic over-production of intermediate size fragments.
The origin of these discrepancies is still unclear. Different
explanations can be considered:

(a) the identification of the source of the fragments is
more difficult at lower collisionnal energies where
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the separation between the projectile, the target, or
the fused system is not as clear as in the case of high
energy collisions, leading thus to possible contamina-
tions between these different sub-systems;

(b) different fragmentation mechanisms could result from
the smaller relative velocities between projectile and
target, particularly in the case of fusion at small im-
pact parameter, inducing possible compression effects.

These discrepancies, more generally, could just signal
the fact that the assumption that fragmenting nuclei be-
have as “simple fluids” breaks down at these lower incident
energies.

Nuclear fragmentation experiments are often analyzed
with the so-called Statistical Multifragmentation Models
[44,45]. In brief, these models deal with the equilibrium
thermodynamics of ensembles of spherical drops of nu-
clear matter confined in a “freezout” volume. Drops inter-
act with each other only by the long range Coulomb force
and their internal partition function is taken from em-
pirical mass formulas or from experiment. These models5

are successful in describing the above mentioned low bom-
barding energy experiments when fixing the size, the den-
sity and the excitation energy of the fragmenting source.
For the high energy Aladin data similar analysis have been
performed but with a larger set of input parameters [39].

The use of percolation theory concepts is however more
comprehensive while much easier to handle. It provides an
excellent agreement with the data without requiring any
adjustable parameter.

We hope that the present results will encourage both
theoretical and experimental studies of the fragmentation
of simple fluids. The fragmentation by collisions of very
large aggregates seems particularly promising, because it
combines the experimental possibility to detect fragments
together with a reduction of finite size and surface correc-
tions effects. Systems that could be studied could range
from hydrogen aggregates (as in [11]) to those of noble
metals. In view of the analysis that we proposed, the data
of each fragmentation event should be characterized by
the size of the individual fragments and possibly by their
individual kinetic energy. The total excitation energy of
the system should range from the regime of evaporation
of monomers to the regime of total vaporization. This is
certainly a difficult but rewarding challenge.

We thank the Aladin collaboration at G.S.I. for allowing us to
use their experimental data.
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